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Eukaryotic cells learn and adapt
via unknown network architectures.
Recent work demonstrated a circuit
of two GTPases used by cells to
overcome growth factor scarcity,
encouraging our view that artificial
and biological intelligence share
strikingly similar design principles
and that cells function as deep rein-
forcement learning (RL) agents in
uncertain environments.
Cells are intelligent machines
The era of single-cell biology has revealed
that individual cells in multicellular organisms
can sense, decide, and act purposefully. In
defining the right decision or action under
an evolving environment, cells do not act
as subservient robots [1]; instead, they fulfill
core properties the technology world
equates to ‘intelligence’ and ‘autonomy.’
Although intelligent behavior of cells
responding to perturbations has been de-
scribed by many groups, the composition,
properties, and architecture of the commu-
nication networks within the cells that sup-
port intelligent behavior have remained
elusive.

Decoding the signaling network
that supports intelligent cellular
behavior: decades in the making
Prior large-scale efforts to decode the
eukaryotic cell’s communication network
[2] solved many important pieces of the
puzzle, such as the importance of the
molecular switches [3], in particular the
heterotrimeric (tG) [4] and monomeric
286 Trends in Biochemical Sciences, April 2024, Vol. 49, No
(mG) [5,6] GTPases of the Ras superfamily.
Switches are perfect regulatory modules in
any network because they can implement
local goals that are, to some degree, self-
maintained and self-controlled by their
dedicated modulators, that is, guanine
nucleotide exchange factors (GEFs; that
turn them ‘ON’) and GTPase-activating
proteins (GAPs; that turn them ‘OFF’).
Relative independence from the rest of the
system enables each module to achieve
its goals despite changing conditions, con-
texts, and locations. Consistently, a long-
standing tenet was that these two GTPase
modules functioned independently of
each other: tGs were believed to primar-
ily gate incoming signals from the out-
side (i.e., sensing), and mGs were
believed to primarily coordinate mem-
brane and cytoskeletal remodeling
(i.e., responding).

This changed recently with the report of the
existence, composition [7], and functional
consequences [8] of a Golgi-localized cir-
cuit composed of both mG and tG mod-
ules. These studies, conducted largely on
eukaryotic cells of epithelial origin, describe
the conditional self-assembly of the circuit
only when cells sense scarcity of growth
factors [8] (Box 1). The circuit enables
cells to respond by initiating secretion-
coupled autocrine signaling, which trans-
lates into self-sustenance, survival, and ho-
meostasis [8]. Omics-based approaches
pinpointed that such self-sufficiency can
be achieved specifically within the epider-
mal growth factor/epidermal growth factor
receptor (EGF/EGFR) signaling pathway
(Figure 1A), and studies using recombinant
EGF confirmed that activation of the EGF/
EGFR pathway at the plasma membrane
(PM) is sufficient to activate each com-
ponent within the Golgi-localized circuitry
(Figure 1B) [8].

It is noteworthy that, although the com-
ponents [9] (Figure 1B) of these self-
assembled EGF/EGFR autocrine networks
for the maintenance of homeostasis in
. 4
multicellular epithelial monolayers had
been delineated, what couples sensing of
EGF to secretion of EGF remained un-
known (‘black box’; Figure 1B). By virtue
of its ability to enable such coupling, the re-
cently defined Golgi-localized circuit ap-
pears as a credible candidate for this
‘black box.’

The circuit, by design, represents a com-
plex higher-level module that is assembled
when two simpler low-level modules (the tG
and mG switches) are coupled hierarchi-
cally to complete a feedback loop pattern
(Box 1). The modules coregulate each
other (Figure 1C), and the loop pattern com-
pletes each time when mG is turned ‘ON.’
Completion of the loop circuitry
is facilitated by a multimodular scaffold,
Gα-interacting vesicle-associated (GIV) pro-
tein (also known as Girdin), which not only
directly binds the two GTPases and initiates
the loop (Figure 1C,D) but also scaffolds the
GAP for mG (ArfGAP2/3) that completes
the loop. Thus, this circuit exemplifies
three key properties of a network, that is,
modularity, hierarchy, and pattern comple-
tion, all properties of living systems that en-
able components to work together toward
higher-level goals [10].

Cellular versus artificial intelligence
We believe the ability of the cell to use its
Golgi-localized circuit to decide how to
act in uncertain environments resembles
the mathematical framework of an adap-
tive learning system, such as a deep rein-
forcement learning (RL) agent (Figure 1E,
F). RL is a type of machine learning tech-
nique [11] that enables an agent to learn
in an interactive environment by trial and
error and mimics reward (or penalty)-
based learning and decision-making in
humans and other animals. The agent se-
lects an appropriate strategy in relation to
its goals, which dictates its actions. RL
helps the agent to learn the most optimal
policy that maximizes the ‘reward func-
tion,’ which is an incentive mechanism
by which the environment informs the
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Box 1. A circuitry with six features

Like any intelligent system, our cells learn by (inter)acting with and/or on their environment and adjusting their
actions to meet goals. Recently, a molecular circuitry of two interconnected switches has been discovered [8]
(see Figure 1B in the main text), which provides the first glimpse into the architecture of the signaling network
that supports intelligent behavior of cells.

The notable features of this circuitry are as follows:

(i) Modularity: it is composed of two GTPase modules, each capable of self-maintenance and self-control.
(ii) Hierarchy: one GTPase module combines with the other to form a sophisticated high-level module that

allows mutual coregulation.
(iii) Pattern completion: closed-loop control ensures that activation of the first module activates the second

module, which in turn inactivates the first module.
(iv) Purposeful: the circuit is self-assembled only when epithelial cells sense scarcity of growth factors and

must secrete them to survive and achieve homeostasis.
(v) Proportionate: its design principles ensure that sensing (dose of stimuli) and secreting (response) are

aligned to achieve a self-sustained autocrine loop.
(vi) Supports learning and adaptation: by virtue of its ability to train a cell to sense what it secretes as a

‘reward’ that incentivizes further secretion, the circuit supports adaptive or reinforcement learning (RL)
(Figure 1D).

These first glimpses into the architecture of an RL circuit in cells point to an exciting possibility of finding other
examples.
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agent what helps/hurts using reward/
punishment (Figure 1G). The agent must
strive to maximize the total reward over
time, influencing it exclusively through its
own actions (Figure 1H,I). We
hypothesize that the epithelial cell (agent)
responds to growth factor scarcity (envi-
ronmental uncertainty) by assembling a cir-
cuitry that optimizes growth factor
secretion (actions) (Figure 1H, top). Be-
cause of the cell’s action, the changing en-
vironment results in a ‘reward’ (of
secretion-coupled growth signaling), and
the cell meets its goal (i.e., survive, prolifer-
ate, maintain homeostasis) (Figure 1H, bot-
tom). Thus, biological and artificial
intelligence both exemplify agents
interacting with and learning within an un-
certain environment, and the circuit pro-
vides a glimpse of the network that
supports such behavior beyond just super-
ficial mimicry or analogies.

Cellular intelligence in health and
disease
As for its physiological relevance, this cir-
cuitry is likely to impact numerous cellular
functions that require the secretory path-
way, for example, composition, function,
and repair of the PM, control of cell size,
and the regulation of the extracellularmatrix.
The circuit’s GTPase modules could repre-
sent points of vulnerability because their
targeted disruption with toxins (i.e., Arf1
with the fungal toxin, brefeldin A, or Gαi
with the exotoxin produced by Bordetella
pertussis) causes cell death [8].

As for what cells ‘learn’ in the presence of
this circuit, it has recently been reported
[12] that the circuit supports a 32-gene
signature (which includes EGF) that is
uniquely induced in tumor cells just prior
to shedding from the primary tumor and
entering the systemic circulation. The sig-
nature predicted the metastatic potential
of circulating tumor cells (CTCs). Because
CTCs en route to metastatic spread repre-
sent the riskiest phase in the life of a cancer
cell, which lasts ~10 min and is deprived of
biologically available EGF [12], the circuit
may support evolvability that is far more
rapid than the slow Darwinian pace at the
primary or metastatic sites.

Concluding remarks
Although we believe the Golgi-localized
circuit offers a glimpse into how epithelial
Trend
cells learn, other cell types may use dif-
ferent circuitry to serve vastly different
‘goals.’ Because mGs are unique to or-
ganelles [6] and tGs are not, it is possible
that the circuit(s) repeat(s) elsewhere in
cells to make those organelles responsive
to the changing environment. To deter-
mine if such is the case, there are a few
immediately actionable tasks of high pri-
ority. On the experimental side of things,
because the ‘nidus’ of the multiscale feed-
back architecture, that is, the coupled-
switch circuit, has emerged (Figure 1F),
an easy starting point would be to find ex-
amples of such coupling elsewhere within
the cell.

On the systems side of things, it is vital to
explore if this GTPase circuitry provides
robustness in the setting of fluctuating
signals/noise, can be converted into oscil-
lators by tuning the cofactor concentra-
tions that catalyze the activity of the
cascades, or is much closer to the ideal
all-or-none switchlike behavior, all impor-
tant and emergent properties of network
motifs that were observed during simula-
tions on a thermodynamically consistent
model for interconnected GTPases [13].
It is possible that the closed-loop circuitry
can precisely tune the collective switching
of mGTPases along the endomembrane
surface (as ‘waves’) and throughout the
entire network, simply by being able to
inactivate the Arf1 mGTPase, as shown
recently in the case of the Rab mGTPase
network [14].

On the computational side of things, quan-
titative theories are required, much like
what led to our understanding of the
dopamine-based RL in the brain, which is
regarded as one of the greatest successes
of computational neuroscience [15]. It
is unclear if the circuit, and the ‘learning’
that it supports, enables a cell to optimize
a sequence of actions based on its ability
to predict the total reward expected over
the future; such ability, also called temporal
difference learning [11], is a central feature
s in Biochemical Sciences, April 2024, Vol. 49, No. 4 287
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of RL and could be tested in the labora-
tory by fitting the model to experimental
output(s).

In conclusion, the network architecture
that supports biological intelligence is ex-
pected to help understand the process
and products of evolution and anticipate
how intrinsic (disease-causing mutations)
or extrinsic (our exposome, i.e., microbes,
diets, toxins, chemicals, etc.) threats may
exploit or corrupt the network. It is also
likely that biological intelligence, which has
been perfected over billions of years of evo-
lution, could transform the design of artifi-
cial intelligence systems.
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